Search results for "plant protein"
showing 10 items of 253 documents
MD Simulation Investigation on the Binding Process of Smoke-Derived Germination Stimulants to Its Receptor
2019
Karrikins (KARs) are a class of smoke-derived seed germination stimulants with great significance in both agriculture and plant biology. By means of direct binding to the receptor protein KAI2, the compounds can initiate the KAR signal transduction pathway, hence triggering germination of the dormant seeds in the soil. In the research, several molecular dynamics (MD) simulation techniques were properly integrated to investigate the binding process of KAR1 to KAI2 and reveal the details of the whole binding event. The calculated binding free energy, -7.00 kcal/mol, is in good agreement with the experimental measurement, -6.83 kcal/mol. The obtained PMF profile indicates the existence of thre…
The targeted overexpression of SlCDF4 in the fruit enhances tomato size and yield involving gibberellin signalling
2020
AbstractTomato is one of the most widely cultivated vegetable crops and a model for studying fruit biology. Although several genes involved in the traits of fruit quality, development and size have been identified, little is known about the regulatory genes controlling its growth. In this study, we characterized the role of the tomato SlCDF4 gene in fruit development, a cycling DOF-type transcription factor highly expressed in fruits. The targeted overexpression of SlCDF4 gene in the fruit induced an increased yield based on a higher amount of both water and dry matter accumulated in the fruits. Accordingly, transcript levels of genes involved in water transport and cell division and expans…
Characterization of the Copper Transporters from Lotus spp. and Their Involvement under Flooding Conditions
2019
Forage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions. Previous results indicated that incorporation of Lotus spp. into natural grassland increases forage nutritional quality, including higher copper levels. However, the biological processes and molecular mechanisms involved in copper uptake by Lotus spp. remain poorly understood. Here, we identify four genes that encode p…
Two maize Kip-related proteins differentially interact with, inhibit and are phosphorylated by cyclin D–cyclin-dependent kinase complexes
2017
Highlight Maize Kip-related proteins can be differentially phosphorylated by different cyclin D–cyclin-dependent kinase complexes and this influences their performance as cyclin-dependent kinase inhibitors.
Genetic determinants of seed protein plasticity in response to the environment in Medicago truncatula
2021
As the frequency of extreme environmental events is expected to increase with climate change, identifying candidate genes for stabilizing the protein composition of legume seeds or optimizing this in a given environment is increasingly important. To elucidate the genetic determinants of seed protein plasticity, major seed proteins from 200 ecotypes of Medicago truncatula grown in four contrasting environments were quantified after one-dimensional electrophoresis. The plasticity index of these proteins was recorded for each genotype as the slope of Finlay and Wilkinson's regression and then used for genome-wide association studies (GWASs), enabling the identification of candidate genes for d…
A Complex Gene Network Mediated by Ethylene Signal Transduction TFs Defines the Flower Induction and Differentiation in Olea europaea L.
2021
The olive tree (Olea europaea L.) is a typical Mediterranean crop, important for olive and oil production. The high tendency to bear fruits in an uneven manner, defined as irregular or alternate bearing, results in a significant economic impact for the high losses in olives and oil production. Buds from heavy loaded (‘ON’) and unloaded (‘OFF’) branches of a unique olive tree were collected in July and the next March to compare the transcriptomic profiles and get deep insight into the molecular mechanisms regulating floral induction and differentiation. A wide set of DEGs related to ethylene TFs and to hormonal, sugar, and phenylpropanoid pathways was identified in buds collected from ‘OFF’ …
How water-soluble chlorophyll protein extracts chlorophyll from membranes.
2020
Water-soluble chlorophyll proteins (WSCPs) found in Brassicaceae are non-photosynthetic proteins that bind only a small number of chlorophylls. Their biological function remains unclear, but recent data indicate that WSCPs are involved in stress response and pathogen defense as producers of reactive oxygen species and/or Chl-regulated protease inhibitors. For those functions, WSCP apoprotein supposedly binds Chl to become physiologically active or inactive, respectively. Thus, Chl-binding seems to be a pivotal step for the biological function of WSCP. WSCP can extract Chl from the thylakoid membrane but little is known about the mechanism of how Chl is sequestered from the membrane into the…
Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development
2020
Plastids, the defining organelles of plant cells, undergo physiological and morphological changes to fulfill distinct biological functions. In particular, the differentiation of chloroplasts into chromoplasts results in an enhanced storage capacity for carotenoids with industrial and nutritional value such as beta-carotene (provitamin A). Here, we show that synthetically inducing a burst in the production of phytoene, the first committed intermediate of the carotenoid pathway, elicits an artificial chloroplast-to-chromoplast differentiation in leaves. Phytoene overproduction initially interferes with photosynthesis, acting as a metabolic threshold switch mechanism that weakens chloroplast i…
The chaperone-like protein Cdc48 regulates ubiquitin-proteasome system in plants.
2021
The degradation of misfolded proteins is mainly mediated by the ubiquitin-proteasome system (UPS). UPS can be assisted by the protein Cdc48 but the relationship between UPS and Cdc48 in plants has been poorly investigated. Here, we analyzed the regulation of UPS by Cdc48 in tobacco thanks to two independent cell lines overexpressing Cdc48 constitutively and plant leaves overexpressing Cdc48 transiently. In the cell lines, the accumulation of ubiquitinated proteins was affected both quantitatively and qualitatively and the amount of proteasomal subunits was modified, while proteolytic activities were unchanged. Similarly, the over-expression of Cdc48 in planta impacted the accumulation of ub…
Transcriptomic responses to biotic stresses in Malus x domestica: a meta-analysis study.
2017
AbstractRNA-Seq analysis is a strong tool to gain insight into the molecular responses to biotic stresses in plants. The objective of this work is to identify specific and common molecular responses between different transcriptomic data related to fungi, virus and bacteria attacks in Malus x domestica. We analyzed seven transcriptomic datasets in Malus x domestica divided in responses to fungal pathogens, virus (Apple Stem Grooving Virus) and bacteria (Erwinia amylovora). Data were dissected using an integrated approach of pathway- and gene- set enrichment analysis, Mapman visualization tool, gene ontology analysis and inferred protein-protein interaction network. Our meta-analysis revealed…